×
Peng-Robinson-Gasem (2001)
$P = \dfrac{RT}{v-b} - \dfrac{a\alpha}{v(v+b)+b(v-b)}$
$a = \left( \dfrac{Z^2_c}{a'b'}\right) \dfrac{R^2T_c^2}{P_c}\cong 0,45724\frac{R^2T_c^2}{P_c}$
$b = (b'Z_c)\dfrac{RT_c}{P_c}\cong 0,07780\frac{RT_c}{P_c}$
$\alpha = e^{\left[\left(2+0,836\frac{T}{T_c}\right)\left(1-\left(\frac{T}{T_c}\right)^{\kappa}\right)\right]}$
$\kappa = 0,134 + 0,508\omega - 0,0467\omega^2$
$Z_c=\dfrac{1}{32}\left( 11-2\sqrt{7}\text{sinh}\left( \dfrac{1}{3}\text{asinh}\left( \dfrac{13}{7\sqrt{7}}\right)\right)\right) \approx 0.307401$
$a'=\dfrac{3}{8}\left( 1+\cosh\left( \dfrac{1}{3}\text{acosh}\left( 3\right)\right)\right) \approx 0.816619$
$b'=\dfrac{1}{3}\left( \sqrt{8}\text{sinh}\left( \dfrac{1}{3}\text{asinh}\left( \sqrt{8}\right)\right)-1\right) \approx 0.253077$